1. Power of Lens: $\mathrm{P}=1 / \mathrm{f}$

* The SI Unit of power is diopter. It's denoted by the letter "D".
* Focal length of the lens is expressed in meter.
* A lens of focal length 100 cm has a power of one diopter then i.e; 1 diopter $=1 \mathrm{~m}^{-1}$
*Power of the converging or convex lens is taken as + ve while the power of diverging or concave lens is -ve.
*Power of a lens is measured by an instrument called dioptremeter.

2. Lenses in Combination:

* When 2 or more lenses are used in combination, the converging or diverging power varies.
* The equivalent focal length F of 2 lenses of focal f_{1} and f_{2} in contact is given by, $1 / F=1 / f_{1}+1 / f_{2}$, and so, the power of the combination P is, $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$.

:: $\underline{\text { NUMERICALS:: }}$

Q.1. The power of converging lens is 4 D and that of a diverging lens 2.5 D . What is the resultant power and the nature of this combination of lenses placed closed together?
Q.2. (a) Two lens have power of (i) +2 D (ii) -4D. What is the nature and focal length of each lens?
(b) An object is kept at a distance of 100 cm from each of the above lenses. Calculate the:
(i) Image distance (ii) Magnification in each of the two cases.
Q.3. A student uses a lens of focal length 50 cm and another of -50 cm . What is the nature of the lens and its power used by each of them?
Q.4. A convex lens has a focal length of 40 cm . Calculate its power.
Q.5. A convex lens of focal length 25 cm and a concave lens of focal length 10 cm are placed in close contact with each other calculate the lens power of this combination.

