PHYSICS - LIGHT REFLECTION AND REFRACTION
 Name:

SPHERICAL LENS
 FORMULAS::

1. Lens Formula: $1 / \mathrm{f}=1 / \mathrm{v}-1 / \mathrm{u}$

* Where f, v and u are the focal length, image distance and object distance.

Size of object (h_{0}) $h_{o} \quad u$
* Magnification, m is -ve for real and inverted images and +ve for virtual and erect images.

SIGN CONVENTION FOR SPHERICAL LENSES

Convex		Concave	
Real image ($\mathrm{u}>$ or $=\mathrm{f}$)		Virtual image ($\mathrm{u}<\mathrm{f})$	
Distance of Object	$\mathrm{u}=-\mathrm{ve}$	$\mathrm{u}=-\mathrm{ve}$	$\mathrm{u}=-\mathrm{ve}$
Distance of Image	$\mathrm{v}=+\mathrm{ve}$	$\mathrm{v}=-\mathrm{ve}$	$\mathrm{v}=-\mathrm{ve}$
Focal Length	$\mathrm{f}=+\mathrm{ve}$	$\mathrm{f}=+\mathrm{ve}$	$\mathrm{f}=-\mathrm{ve}$
Height of Object	$\mathrm{h}_{\mathrm{o}}=+\mathrm{ve}$	$\mathrm{h}_{\mathrm{o}}=+\mathrm{ve}$	$\mathrm{h}_{\mathrm{o}}=+\mathrm{ve}$
Height of Image	$\mathrm{h}_{\mathrm{i}}=-\mathrm{ve}$	$\mathrm{h}_{\mathrm{i}}=+\mathrm{ve}$	$\mathrm{h}_{\mathrm{i}}=+\mathrm{ve}$
Magnification	$\mathrm{m}=-\mathrm{ve}$	$\mathrm{m}=+\mathrm{ve}$	$\mathrm{m}=+\mathrm{ve}$

$::$ NUMERICALS::

Q.1. An object of 2 cm height is kept in front of a convex lens which produces a magnification of 0.5 . Calculate the size of image. Will the image be erect or inverted? Give reasons for your answers?
Q.2. How far should an object be placed from a convex lens of focal length 20 cm to obtain its image at a distance of 30 cm from the lens? What will be the height of the image if the object is 6 cm tall?
Q.3. A convex lens has a focal length of 10 cm . At what distance from the lens should the object be placed so that it forms a real and inverted image 20 cm away from the lens? What would be the size of the image formed if the object is 2 cm high?
Q.4. An object of height 2 cm is placed perpendicular to the principal axis of a concave lens of focal length 15 cm use lens formula to determine the position size and nature of the image if the distance of the object from the lens is 10 cm .
Q.5. A concave lens of focal length 15 cm forms an image 5 cm from the lens. How far is the object placed from the lens? Draw a ray diagram.

